
报告题目:Photocatalytic Valorization of Lignin and Biomass-Derived Intermediates
报告人:范先锋 教授 (爱丁堡大学工程院)
报告时间:2025年9月4日14:30-15:30
报告地点:炼化楼2楼会议室
个人简介:范先锋,爱丁堡大学工程院教授(Chair Professor),英国皇家化工协会会士,颗粒技术首席,材料和过程所所长,原系化学工程系主任,副主任,博士和博士后导师,Journal of Environmental Management编辑,清洁能源科学与技术期刊主编,现代绿能期刊主编,化工前沿期刊编辑,国际学术杂志编委。英国EPSRC Associate College,UKCCSRC,UKSCCS,the World Society of Sustainable Energy Technologies, the World Science and Engineering Academy and Society应邀成员。曾为英国伯明翰大学research fellow,英国伦敦南岸大学化学石油工程专业高级讲师。范先锋教授在跨专业、跨学科、多团队联合研发等方面具有多年的丰富经验,常年从事储能,光催化,碳捕集和利用,生物质转换,反应工程,颗粒技术,医药制剂,可再生能源方面的研究。研发的同位素分离技术,钛,铜,锌,银回收先进工艺,荣获英国铸造奖,国家科技进步二等奖等多个奖项,获企业和英国政府大力资助,研究成果被多家媒体报道,并应邀出席和组织国际会议作专题报告70余次,与20多个世界级科研团队保持稳定的合作关系。长期担任欧盟、美国、加拿大等国家级的科研项目评委。获英国皇家协会,工程物理协会科研基金以及企业研发经费累计超过7500万元。负责50多个科研项目,包括低碳能源,储能,大气污染,同位素分离,催化反应,流化床,粉料混合,粉料成团。已经发表240篇以上的英文学术论文,和5部英文专著或章节。被北京航空航天大学,华北电力大学聘请为111引智成员,为韩国延世大学研究生讲授颗粒技术。曾获得英国铸造协会金奖,中国科技进步二等奖,中国有色金属工业总公司一等和二等奖。
教学:长年从事化工原理,化学反应工程,颗粒技术,胶体和界面方面的教学。
范先锋爱丁堡大学官方网页:https://www.eng.ed.ac.uk/research/institutes/imp/staff-and-students
报告摘要:Lignocellulosic biomass is primarily composed of cellulose (~40%–60%), hemicellulose (~20%–40%), and lignin (~10%–24%). While cellulose and hemicellulose have been widely exploited for the production of microfibrils and C5/C6 chemicals, lignin remains largely untapped due to its complex structure and inherent recalcitrance. As the most abundant aromatic biopolymer, lignin consists of monomeric units connected through robust C–O or C–C bonds. These aromatic constituents could serve as valuable platform chemicals for industries such as perfumery, pharmaceuticals, and agriculture. The cleavage of interunit aryl ether C–O bond linkages, which account for over 50% of all interunit linkages in lignin, is considered a promising strategy for lignin conversion and utilization. However, the effective cleavage of C–O bonds to isolate these monomers remains a significant challenge for industrial applications.
This study presents a comprehensive framework for improving photocatalytic lignin valorization through rational catalyst design. The key advancements include:
• Development of integrated photocatalysts with various functional components for efficient lignin conversion
• Introduction of a water-promoting strategy to enhance reaction kinetics and selectivity
• Refinement of essential reaction steps in the hydrogen transfer and Cα–H bond activation processes
These findings establish a solid foundation for advancing sustainable biomass utilization and scaling up photocatalytic lignin conversion for industrial applications. Future research should focus on optimizing catalyst stability, improving quantum efficiencies, and integrating these processes into biorefinery frameworks.